Немного теории
Теплопрово́дность — это процесс переноса внутренней энергии от более нагретых частей тела (или тел) к менее нагретым частям (или телам), осуществляемый хаотически движущимися частицами тела ( атомами, молекулами, электронами и т.п.). Такой теплообмен может происходить в любых телах с неоднородным распределением температур, но механизм переноса теплоты будет зависеть от агрегатного состояния вещества. Явление теплопроводности заключается в том, что кинетическая энергия атомов и молекул, которая определяет температуру тела, передаётся другому телу при их взаимодействии или передаётся из более нагретых областей тела к менее нагретым областям. Иногда теплопроводностью называется также количественная оценка способности конкретного вещества проводить тепло. В Международной системе единиц (СИ) единицей измерения коэффициента теплопроводности является Вт/(м·K) (W/m*K)
Итак мы подошли к основной разнице двух радиаторов, а именно разнице между теплопроводности меди и алюминия. У меди - 401 Вт/м*К, а у алюминия - 237 Вт/м*К. Это идеальные значения, не всегда встречается чистая медь или алюминий, поэтому числа могут немного отличаться. Тем самым медь "проводит тепло" в 1.69 раз лучше, чем алюминий.
Главные вопросы
Хорошо, но почему тогда большинство радиаторов алюминиевые?
- Цена. Медь дороже алюминия примерно в 4 раза, поэтому экономически выгоднее использовать алюминий, нежели медь.
- Вес. Медные радиаторы значительное тяжелее, алюминиевых, если мы не говорим о небольших радиаторах, где разница в весе будет незначительна.
Казалось бы всё, в материнских платах в большинстве случаев используются алюминиевые радиаторы и на этом можно было бы закончить, если не ещё один нюанс.
Вспомним башенные кулеры, у которых медное никелированное основание через которое проходят медные тепловые трубки и на которые напрессованы или напаяны тонкие алюминиевые пластины или же радиаторы на материнских платах с медной трубкой. Зачем смешивание двух материалов, если можно сделать всё либо медным, либо алюминиевым? Отчасти ответ выше, соотношение стоимости и эффективности охлаждения - одна из веских причин, по которым пользователь выберет ту или иную систему охлаждения.
Вспомним башенные кулеры, у которых медное никелированное основание через которое проходят медные тепловые трубки и на которые напрессованы или напаяны тонкие алюминиевые пластины или же радиаторы на материнских платах с медной трубкой. Зачем смешивание двух материалов, если можно сделать всё либо медным, либо алюминиевым? Отчасти ответ выше, соотношение стоимости и эффективности охлаждения - одна из веских причин, по которым пользователь выберет ту или иную систему охлаждения. Есть и ещё одна причина - тепловая инерция.
Тепловая инерция — это термин, используемый в основном в инженерном и научном моделировании теплопередачи, и обозначающий совокупность свойств материала, связанных с теплопроводностью и объёмной теплоёмкостью.
Объёмная теплоёмкость характеризует способность данного объёма данного конкретного вещества увеличивать свою внутреннюю энергию при изменении температуры вещества.
Тепловая инерция меди выше, чем у алюминия, но что это значит на практике? Да медь отлично "проводит тепло" при этом медь "неохотно" охлаждается. В процессе охлаждения необходимо как и отводить тепло от источника нагрева, так и отводить тепло от самих радиаторов, которое обычно происходит за счёт воздушного потока. Алюминий же в свою очередь не так хорошо "проводит" тепло, не так равномерно нагревается, но при этом имеет более низкую тепловую инерцию. Тем самым за счёт изготовления, тонких алюминиевых пластин, которые нагреваются быстрее, чем толстые и вентиляторов происходит их постоянное и достаточно быстрое охлаждение. Конечно физику не обмануть и каждый радиатор или система охлаждения обладают своей эффективностью на которую она рассчитана, за рамки которой при обычных условиях ей не выйти.